Undetermining Determinism

This week I discuss the notion of determinism, or “the doctrine that all events, including human choices and decisions, have sufficient causes.”[i] The post will cover how determinism works as a method of explanation, why this method of explanation is problematic, and finally a several different specific flavors of determinism that impact people and nature.

What does determinism mean for people and nature?

Discussing determinism means thinking about causes and effects. In particular, not just how we know causes and their effects, but also what causes and effects exist and whether or not we can know them at all. These considerations correspond to questions 5c-5e in my guide:

  1. What counts as a cause and what counts as an effect?
  2. What can be known about the problem? In particular, are there limits to knowledge? Are there limits to control? What is within human power and what is beyond?
  3. What counts as a “fact” or evidence? Who knows things?

We ask these questions when analyzing frames because, as STS scholar Sheila Jasanoff has written, “What we know about the world is intimately linked to our sense of what we can do about it.”[ii] Deterministic accounts sharply limit what may count as a cause, attributing causal power to structural factors—the physical environment, technology, genetic makeup, or social structures like the State or the Economy—rather than individual actions. In so doing, such accounts make history appear inevitable, that what happened was unavoidable. This sentiment of the inevitable deprives individual people of causal power, [iii] suppressing any hopes or ambitions we might have to change the course of history. Moreover, determinist accounts tend to focus narrowly on just one structural factor at the expense of others. This leads to one-sided explanations such as attributing the European conquest of the Americas solely to the “accident” of guns, germs and steel.[iv] In other words, determinism not only limits how we understand history and attribute praise and blame for past events, but also what powers we recognize in ourselves in the present and the sorts of possibilities we can imagine for the future.

Environmental Determinism

In this form of determinism, accidents of the environment—such as the distribution of resources like water[v] —determine history (see note iv). One historical example emphasizes the vagaries of climate in determining race. In the late nineteenth century, it was commonly believed among white colonists in tropical places that the more “stimulating” northerly climate of Europe (and North America) had led whites to be naturally superior thinkers and moral leaders, while the “degenerating” tropical climates had naturally stunted the moral and intellectual growth of the people living there. This climatic determinism served to rationalize a deep-seated racism among white colonists and lend a pseudo-scientific pretext for the obvious brutality and oppression of colonialism. It also caused anxiety among whites that they might suffer the same “fate.” Of major concern to colonists in the Philippines, writes Warwick Anderson, was the question, “Would the white race degenerate and die off in a climate unnatural to it?” Ironically, the general sentiment was, as one prominent U.S. Army doctor put it at the time, that “the Anglo-Saxon branch of the Teutonic stock is severely handicapped by nature in the struggle to colonize the tropics.” [vi]

Technological Determinism

A frame based on technological determinism grants too much causal agency to technologies and discounts the agency of people and nature.[vii] This makes it difficult to imagine ways for people or nature to change the course of history, to re-route it from its current path.

Environmental historian Edmund Russell identifies two deterministic approaches to explaining the role of technology in relations between people and nature.[viii] The first he calls the deus ex machina approach, summarized as “science invents, technology applies, and man conforms;” the second he calls the “necessity is the mother of invention” approach.[ix] Both lead to accounts of people and nature that suffer from technological determinism.

Deus ex machina

We can see a deus ex machina approach in a commonly accepted narrative of climate change. In this telling, once people discovered that fossil fuels such as coal and oil are a plentiful source of energy, it was inevitable that technologies would develop to direct that energy toward all sorts of uses. From there, societies would inevitably adapt to incorporate these very effective fossil fuel technologies as fully as possible into their economic, political, and productive fabrics. Societal dependence on the gasoline-powered automobile, coal and natural gas power plants, and petrochemical inputs to industrial and agricultural processes were unavoidable outcomes of the fact that large reserves of oil, coal, and natural gas exist underground. From here, it is a short leap to conclude that climate change, though caused by humans burning fossil fuels, was nonetheless unavoidable (i.e. not our fault). This technological determinist account rationalizes the second framing of climate change that I identified in my post on Framing Environmental Problems. If using fossil fuels to the fullest was inevitable, then stopping climate change by scaling back how much fossil fuel people burn (the goal identified by the first frame) is not a viable solution. The only route left would be to go with the flow and hope that this technological rollercoaster will produce some solutions for adapting to the dangers of climate change.

Necessity is the mother of all invention

The regression to deterministic accounts of people and nature is more subtle in the “necessity is the mother of all invention” approach. “It enters,” writes Russell, “when we assume that technical choices are inevitable—technical criteria govern technical decisions, each step in design follows logically from the one before, and designers arrive at optimal solutions.”[x] This trap tends to occur through an asymmetrical focus on technologies that have succeeded, rather than those that have failed. By only looking at the successes, the development of technology along a certain path seems ever more self-evident, in other words, inevitable.[xi]

One such account could be told of synthetic fertilizers. The story might go that modern agriculture depends upon artificial sources of nitrogen (N) in order to counteract declining soil fertility from long-term farming. N is generally the limiting nutrient in agriculture (along with P and K, to a lesser extent), and over time repeated harvests pull that N out of the soil and ship it off to towns and cities for people to consume in the form of food. As the soil loses N, it must be replaced. Naturally occurring N-rich fertilizers (e.g. Peruvian guano or Chilean sodium nitrate) are in limited supply and must be shipped long distances. Therefore, it was only logical and rational that scientists should develop a means for fixing N from the atmosphere (which is about 80% N2) into a form readily usable by plants (NH3).[xii] Its widespread adoption is further evidence that synthetic fertilizer from industrially fixed N was an optimal technological innovation.

However, such an account would ignore several important factors in the development of synthetic N fertilizers. For example, it would ignore the history of how and why scientists developed a process for fixing atmospheric nitrogen. In 1909, the German chemist Fritz Haber successfully demonstrated a process for the synthesis of liquid ammonia (NH3) from the reaction of atmospheric nitrogen (N2) with hydrogen gas (H2). He teamed up with Carl Bosch under the hire of German chemical company BASF to bring the process “to an industrial scale with a view to its economic application”.[xiii] By 1911 they had built an operational pilot plant, and by 1913, on the eve of WWI, brought a full-scale manufacturing plant online. Ironically, Haber and Bosch were working not toward the goal of better fertilizer, but rather toward providing a ready supply of military-grade nitrate (NO3) for the manufacture of explosives. Germany’s primary source of NO3 from Chilean sodium nitrate, and had to be shipped at great expense across the Atlantic. This supply line was also highly vulnerable to disruption (for example by Great Britain’s famed Royal Navy), and the Haber-Bosch process allowed Germany to use its ample coal reserves and normal air to provide a near-infinite local supply of ammonia. Only somewhat coincidentally did the applications for agriculture become clear during the inter-war period. And it wasn’t until after WWII that the process began to be widely used to fix nitrogen for use in fertilizers: the US bomb-making industry realized that it’s now useless N-fixing capacity could provide a profitable solution to the shambles that world agricultural production and trade had been left in after decades of war and depression.[xiv]

Undetermining Dichotomies

The point of considering technological determinism is to recall that technologies shape and are shaped by social, environmental and personal factors. Technologies are not inevitable, “they might have been otherwise.”[xv] And that goes for any type of determinism: history might have developed otherwise, and it still may.

Determinism tends to reinforce a number of problematic dichotomies (black-and-white views of the world). I have already discussed briefly the presumed sharp divide between nature and culture, and we have here seen reference to structure and agency. In the future we will also cover complications arising from separating science and society, and the state and society. If we hope to overcome these sharp divisions, we must avoid narrowly deterministic accounts of the world that divide people and nature unquestioningly into powerful causes and powerless effects.

In the next couple of weeks we will cover some of the possible responses to determinism, including ways to get beyond these problematic dichotomies. We’ll start next week with a discussion of integrative terms from our first guest blogger, my friend and colleague Ted Grudin.

[i] Dictionary.com had the most concise definition I could find.

[ii] Jasanoff, Sheila. 2006. State of Knowledge: The co-production of science and social order. Routledge. p. 14.

[iii] Determinism and free will do not play well together. Especially in the case of strong types of Newtonian determinism, “the existence of the strings of physical necessity, linked to far-past states of the world and determining our current every move, is what alarms us.”Hoefer, Carl. 2010. Causal Determinism. Stanford Encyclopedia of Philosophy. Online at: http://plato.stanford.edu/entries/determinism-causal/. This is also a good starting place for delving more deeply into the philosophy of determinism.

[iv] Referring to Jared Diamonds’ (in)famous book, Guns, Germs and Steel: The Fates of Human Societies. Diamond has (rightly) received much criticism for the book’s apologist stance on European conquest. But he has also received criticism for his environmental determinist take on history, “Environment molds history.” I also like this entry from Barbara King on NPR’s 13.7 blog, “Why does Jared Diamond make anthropologists so mad?”

[v] e.g. Solomon, Steven. 2010. Water: The epic struggle for wealth, power and civilization. New York: Harper.

[vi] Anderson, Warwick. Colonial Pathologies. 2006. Duke University Press. Ch. 1.

[vii] For more detailed discussion on technological determinism, I suggest the edited volume, Does Technology Drive History? The dilemma of technological determinism. Ed. M. Smith and L. Marx. 1994. MIT Press.

[viii] Russell, Edmund. 2011. Evolutionary History: Uniting History and Biology to Understand Life on Earth. Cambridge University Press. p. 139-142.

[ix] Ibid, p. 139.

[x] Ibid, p. 140.

[xi] “Preference for successful innovations seems to lead scholars to assume that the success of an artifact is an explanation of its subsequent development. Historians of technology often seem content to rely on the manifest success of the artifact as evidence that there is no further explanatory work to be done.” Trevor Pinch and Wiebe Bijker in The Social Construction of Technological Systems, Ed. Bijker, Hughes and Pinch. 1999 (1987). MIT Press. p. 22.

[xii] This article from Nature provides a good overview of the nitrogen cycle for reference.

[xiii] Carl Bosch, quoted in, Paull, J. 2009. A century of synthetic fertilizer:1909-2009. Journal of Bio-Dynamics Tasmania 94 : 16-21.

[xiv] Smil, Vaclov. 2001. Enriching the Earth: Fritz Haber, Carl Bosch, and the transformation of world food production.

[xv] Bijker and Law. 1997 (1994). Shaping Technology/Building Society. p. 3.


Leave a Comment

Filed under Basic Concepts

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.